Nutrition Sensitive Agriculture
Why Does Agriculture Exist?

- To produce food and fiber
- To provide incomes and livelihoods for farmers
- To provide nutrients!
Agriculture has focused mainly on production.

The world’s farmers have more than doubled cereal production in four decades.

Source: IFPRI
But Agriculture Plays Many Roles

Agriculture’s Roles

- Health
- Gender
- Tradition
- Social
- Culture

Food production

- Cultivation and commercialization of traditional foods
- Recognition of traditional and diversified land use
- Valuation of environmental services

Economic
- Income
- Marketing
- Trade

Social
- Water
- Climate
- Biodiversity

Environmental

Bread for the world, 2010
Nutrition Sensitive Agriculture

- Agriculture is the sector best placed to affect food production and consumption of nutritious foods needed for healthy and active lives.
- Agriculture has the most direct influence and contact with the majority of households in the world where undernourished individuals reside.
- A large percentage of rural women are employed in the formal or informal agriculture sector.
Examples of *nutrition sensitive* agriculture

- Diversifying Homestead Food Production
- Utilizing biodiversity
- Fortifying staple crops: Biofortification
- Fortifying major foods post harvest
- Processing foods post-harvest
- Sensitizing value chains for nutrition
- Focusing on women
Homestead Food Production

• Usually through diversification of crops and animals being grown and raised on land
• Often done through community or home gardens (kitchen gardens)
• Nutrition and income can improve but with an education component
• Done mainly in Asia and women are targeted
• Vitamin A and iron status improves
• When livestock and small animal rearing and fish farming are incorporated, increased income generation and nutrition improvements
Gardens
Animal Source Proteins make huge contributions to improving nutrition.
Fruits and Vegetables

Rich in micronutrients – vitamins and minerals as well as health promoting properties

BUT....

Need to consume an abundance
Utilizing local foods and biodiversity

- Agrobiodiversity contain wide varieties of species and within species, diverse varieties that contain different levels of nutrients.
- These local foods are often underutilized or neglected, or communities are not aware of their nutritional value.
- For rural farming populations, can provide diverse foods straight from the source.
- Important to utilize local knowledge.

AGROBIODIVERSITY

Mixed agro-ecosystems
- Crop species and varieties
- Livestock and fish species
- Wild species
Biofortification

• Biofortification is the development of staple crops with increased micronutrient density through crop management, breeding and genetic approaches

• Orange flesheed sweet potato

• Golden Rice in the Philippiness
Legumes are important for Nutrition: Protein content of cereals, tubers and legumes

<table>
<thead>
<tr>
<th>Cereals and Tubers (100g)</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>9.4</td>
</tr>
<tr>
<td>Rice (white)</td>
<td>7.1</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>10.3</td>
</tr>
<tr>
<td>Millet</td>
<td>11</td>
</tr>
<tr>
<td>Cassava</td>
<td>1.3</td>
</tr>
<tr>
<td>Potato</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legumes (100 g)</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney beans</td>
<td>23.6</td>
</tr>
<tr>
<td>Cowpea</td>
<td>23.5</td>
</tr>
<tr>
<td>Peanut</td>
<td>25.8</td>
</tr>
<tr>
<td>Soy</td>
<td>33.7</td>
</tr>
</tbody>
</table>
Improving Nutrient Content

• **COOKING**
 – Oil to help absorb fat soluble vitamins
 – Vitamin C increases availability of iron

• **PROCESSING**
 – Thermal processing, mechanical processing, soaking, fermentation, and germination/malting
 • Increase the physicochemical accessibility of micronutrients
 • decrease the content of antinutrients, such as phytate, or
 • increase the content of compounds that improve bioavailability
 – Parboiling
 – Yogurt, jams etc

• **STORING**
 – Solar drying
 – Better storage
A Woman’s Burden

- Nutritional benefits increase when women can strike a balance between the time they give to agricultural tasks and the time they give to child and family care.

- Child nutrition often improves when income is put in the hands of a woman.
Rural Extension Services for Nutrition

• Great idea, but practical?
• Who should take responsibility to deliver nutrition at the community level?
Education and Engaging Communities

• Dietary diversity strategies are more effective when paired with education and messaging.
• Engage communities through participatory approaches and transferring knowledge.
• Breaking social norms and behavior change are challenging but not impossible!

Momentum was produced by the United Nations Integrated Mission in Timor-Leste (UNMIT) in 2012
Nutrient Composition of Foods
Cereal Crop Nutrition

• Form the basis of most diets
• Edible seeds of domesticated grasses: maize, sorghum, millets, wheat, rice, oats, teff, barley, quinoa
• Provide up to 70% of energy intake
• Wheat, rice and maize > ½ the world’s food energy
• High in carbs; some have moderate amounts of protein and B vitamins; low in vitamins A, C
Cereal Composition

Most Cereal Grains have similar structure and nutritive value

100g of whole grain:
• 350 kcal
• 8 to 12 g protein
• Ca, iron and B vitamins
• Lack Vit C and A

Husk – no nutritive value
Pericarp – fibrous; few nutrients
Aleurone – rich in protein, V and M
Endosperm – mainly starch
Germ – nutrient rich
Milling and Fortification

• Pestle and mortar – outer coat is removed but germ remains – leaving some nutrients
• Heavy milling – undesirable from nutritional view
• Unprocessed grains are often considered “poor man’s food” or not the taste preference
• Due to milling, many nations have added fortificants to refined flours
Maize

- Provides mainly carbohydrate calories
- Average annual per capita human consumption is 20 kg in developing countries
- 1/3 of mean caloric intake
Rice

- Primarily carbohydrate source
- Major staple consumed by 3.3 billion people in Asia
- Milling removes roughly 80% of the thiamine from brown rice
Wheat

- Major source of energy
- Higher in protein content than almost all other cereals
- Thiamine, riboflavin, niacin, and small amounts of vitamin A are also present
Content of certain nutrients in 100 g of selected cereals

<table>
<thead>
<tr>
<th>Food</th>
<th>Energy (kcal)</th>
<th>Protein (g)</th>
<th>Fat (g)</th>
<th>Ca (mg)</th>
<th>Fe (mg)</th>
<th>Thiamin (mg)</th>
<th>Ribo (mg)</th>
<th>Niacin (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize flour, whole</td>
<td>353</td>
<td>9.3</td>
<td>3.8</td>
<td>10</td>
<td>2.5</td>
<td>0.30</td>
<td>0.10</td>
<td>1.8</td>
</tr>
<tr>
<td>Maize flour, refined</td>
<td>368</td>
<td>9.4</td>
<td>1.0</td>
<td>3</td>
<td>1.3</td>
<td>0.26</td>
<td>0.08</td>
<td>1.0</td>
</tr>
<tr>
<td>Rice, polished</td>
<td>361</td>
<td>6.5</td>
<td>1.0</td>
<td>4</td>
<td>0.5</td>
<td>0.08</td>
<td>0.02</td>
<td>1.5</td>
</tr>
<tr>
<td>Rice, parboiled</td>
<td>364</td>
<td>6.7</td>
<td>1.0</td>
<td>7</td>
<td>1.2</td>
<td>0.20</td>
<td>0.08</td>
<td>2.6</td>
</tr>
<tr>
<td>Wheat, whole</td>
<td>323</td>
<td>12.6</td>
<td>1.8</td>
<td>36</td>
<td>4.0</td>
<td>0.30</td>
<td>0.07</td>
<td>5.0</td>
</tr>
<tr>
<td>Wheat flour, white</td>
<td>341</td>
<td>9.4</td>
<td>1.3</td>
<td>15</td>
<td>1.5</td>
<td>0.10</td>
<td>0.03</td>
<td>0.7</td>
</tr>
<tr>
<td>Millet</td>
<td>341</td>
<td>10.4</td>
<td>4.0</td>
<td>22</td>
<td>3.0</td>
<td>0.30</td>
<td>0.22</td>
<td>1.7</td>
</tr>
<tr>
<td>Sorghum</td>
<td>345</td>
<td>10.7</td>
<td>3.2</td>
<td>26</td>
<td>4.5</td>
<td>0.34</td>
<td>0.15</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Root crops

- Cassava, potato, cocoa yam
- Easier to cultivate
- High yields/hectar
- High in starch
- Low in protein (1-2%) and vitamins and minerals
- Inferior to cereals nutritionally
Cassava (*Manihot esculenta*)

- High starch
- Major source of calories
- Leaves of cassava are rich in protein, vitamins A and B
Potato

- a source of energy
- high vitamin C
Sweet Potato (*Ipomoea batata*)

- High in carbohydrates
- High in vitamin C
- Yellow-orange fleshe varieties also provide b-carotene
Yam (Dioscorea alata)

- Yam’s flesh may be white, yellow, purple or pink
- A source of protein and some minerals such as phosphorus and potassium
Malanga
Arrowroot
Staple Crop Nutrition

<table>
<thead>
<tr>
<th>Food (100 g)</th>
<th>Energy (cal)</th>
<th>Protein (g)</th>
<th>Fat (g)</th>
<th>Iron (mg)</th>
<th>Calcium (mg)</th>
<th>B-caro (ug)</th>
<th>Vit C (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize flour (whole)</td>
<td>353</td>
<td>9.3</td>
<td>3.8</td>
<td>2.5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maize flour (refined)</td>
<td>368</td>
<td>8.0</td>
<td>1</td>
<td>1.3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rice (polished)</td>
<td>361</td>
<td>6.5</td>
<td>1</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rice (parboiled)</td>
<td>364</td>
<td>6.7</td>
<td>1</td>
<td>1.2</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cassava (bitter, raw)</td>
<td>140</td>
<td>1.2</td>
<td>0.2</td>
<td>1.9</td>
<td>68</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Cassava (meal)</td>
<td>320</td>
<td>1.6</td>
<td>0.5</td>
<td>3.6</td>
<td>66</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Potato (raw)</td>
<td>75</td>
<td>1.7</td>
<td>0.1</td>
<td>1.1</td>
<td>13</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Sweet Potato (pale)</td>
<td>110</td>
<td>1.6</td>
<td>0.2</td>
<td>2</td>
<td>33</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>Sweet Potato (yellow)</td>
<td>110</td>
<td>1.6</td>
<td>0.2</td>
<td>2</td>
<td>33</td>
<td>1800</td>
<td>37</td>
</tr>
</tbody>
</table>
Diversifying Beyond Staple based diets

FIG. 4. The insufficiency of common staple foods to meet critical micronutrient needs, expressed as percentages of required nutrient density (RND). Adapted from Uauy-Dagach and Hertrampf [18]
Pulses (legumes)

- e.g. – beans, peas, lentils, chick peas, groundnuts (peanuts)
- edible seeds
- ~ 22% protein + fat
 - peanuts 45% protein
 - soybeans 35% protein
Common bean (*Phaseolus vulgaris*)

- High source of iron, fiber and carbohydrate
- Good high quality protein source
- 1 cup provides half of folic acid RDA, 30% of daily iron intake, 15% zinc and potassium
Cowpea (*Vigna unguiculata*)

- Provides protein
- High in B vitamins
Peanut (Groundnut)

- High quality oil (50%)
- Digestible protein (25%)
- Valuable source of E, K and thiamin (B1)
- Rich in niacin
Soybeans

- 38% high quality protein (highest of all food crops)
- 18% oil
- High in B vitamins
Fruits

• Outside carbs their main value is vitamins (e.g. C and A)
• Avocados – high in fat
• Guava – highest vitamin C content
• If consumed with fat, vitamin A is absorbed better
Bananas and plantains

- Rich in carbohydrates
- High phosphorus, calcium and potassium
- Rich in vitamin C
Augian

- A 1-cup serving of durian fruit contains 357 calories.
- It also contains quite a bit of fat -- 13 g per serving
- Significant amount of fiber
- 80 percent of the vitamin C you need each day; high in thiamin
Vegetables

- Depends on the type but dark leafy greens are rich in iron, folate, calcium
Vegetables are important for micronutrient consumption:

Nutrient composition of Green Leafy Vegetables found in Timor-Leste

<table>
<thead>
<tr>
<th>Per 100 g</th>
<th>Kailan</th>
<th>Kangkung</th>
<th>mustard leaf</th>
<th>bok choy</th>
<th>chinese cabbage</th>
<th>silverbeet</th>
<th>RDA for adult women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>2.3 g</td>
<td>2.7 g</td>
<td>3.7 g</td>
<td>1.5 g</td>
<td>1.2 g</td>
<td>3.27 g</td>
<td>58 g</td>
</tr>
<tr>
<td>Calcium</td>
<td>173 mg</td>
<td>60 mg</td>
<td>57.7 mg</td>
<td>105 mg</td>
<td>77 mg</td>
<td>51 mg</td>
<td>400 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>1.4 mg</td>
<td>2.5 mg</td>
<td>0.8 mg</td>
<td>0.8 mg</td>
<td>0.31 mg</td>
<td>1.8 mg</td>
<td>19 mg</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>10,000 IU</td>
<td>9665 IU</td>
<td>5881 IU</td>
<td>4468 IU</td>
<td>318 IU</td>
<td>6116 IU</td>
<td>2500 IU</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>140 mg</td>
<td>45 mg</td>
<td>39.2 mg</td>
<td>45 mg</td>
<td>27 mg</td>
<td>30 mg</td>
<td>30 mg</td>
</tr>
</tbody>
</table>

Other names:
- chinese broccoli
- water spinach
- chinese cabbage
- napa cabbage
- chard
Nutrients in Different Types of Foods

<table>
<thead>
<tr>
<th>Food</th>
<th>Rich source of</th>
<th>Moderate source of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>Starch, fibre</td>
<td>Protein, B vitamins, many minerals</td>
</tr>
<tr>
<td>Starchy roots and fruits</td>
<td>Starch, fibre</td>
<td>Some minerals, vitamin C if fresh, vitamin A if yellow or orange</td>
</tr>
<tr>
<td>Beans and peas</td>
<td>Protein, starch, some minerals, fibre</td>
<td>B vitamins</td>
</tr>
<tr>
<td>Oilseeds</td>
<td>Fat, protein, fibre</td>
<td>B vitamins, some minerals</td>
</tr>
<tr>
<td>Fats and oils</td>
<td>Fat</td>
<td>Vitamin A if orange or red</td>
</tr>
<tr>
<td>Dark- to medium-green leaves</td>
<td>Vitamins A and C, folate</td>
<td>Protein, minerals</td>
</tr>
<tr>
<td>Orange vegetables</td>
<td>Vitamins A and C</td>
<td>Fibre</td>
</tr>
<tr>
<td>Orange fruits</td>
<td>Vitamins A and C</td>
<td>Fibre</td>
</tr>
<tr>
<td>Citrus fruits</td>
<td>Vitamin C</td>
<td>Fibre</td>
</tr>
<tr>
<td>Milk</td>
<td>Fat, protein, calcium, vitamins</td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>Protein, vitamins</td>
<td>Fat, minerals (not iron)</td>
</tr>
<tr>
<td>Meat</td>
<td>Protein, lat. iron</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>Protein, iron</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Protein, iron, vitamins</td>
<td></td>
</tr>
</tbody>
</table>

Source: King and Burgess, 1993.
The 9 essential amino acids

• Indispensable to the body to function properly
• Must be obtained from the diet. Our bodies cannot synthesize.
Protein quality of a food

• Ability of a food protein to support growth and maintain body tissues

• *Complete protein* – all 9 essential amino acids

• *Incomplete protein* – missing or low in at least 1 essential amino acid

• *Limiting amino acid* – essential amino acid in the lowest concentration
Animal foods contain all 9 e.a.a.
Complementary proteins

• 2 food protein sources whose amino acid content complement each other in such a way that the limiting amino acid content in one is supplied by the other

• Different plant groups have different limiting amino acids

• Cultures have developed dietary patterns over thousands of years that provide a full complement of essential amino acids
In general, legumes provide plenty of the amino acids isoleucine (Ile) and lysine (Lys), but fall short in methionine (Met) and tryptophan (Trp). Grains have the opposite strengths and weaknesses, making them a perfect match for legumes.

<table>
<thead>
<tr>
<th></th>
<th>Ile</th>
<th>Lys</th>
<th>Met</th>
<th>Trp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Together</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complete protein – grains + legumes
Corn tortillas or rice and beans
Back to Tradition: Batar Dan

100g corn (skins and embryos removed)
10 g red beans
10 g peanuts
20 g boiled pumpkin
15 g green leafy
Incomplete protein

- Cassava flour and water
- Cassava + beans ≠ complete protein
- Plantains (or green bananas) + beans ≠ complete protein
Essential Fatty Acids are important in growth

Essential fatty acids are those that humans are unable to synthesize and must therefore obtain through their diet. They include alpha-linolenic acid (ALA), the building block for the longer-chain omega-3 fatty acids, and linoleic acid (LA), the building block for the longer-chain omega-6 fatty acids.

<table>
<thead>
<tr>
<th></th>
<th>INFANTS AND YOUNG CHILDREN (6–24 MONTHS)</th>
<th>PREGNANCY AND LACTATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fat</td>
<td>Gradual reduction to 35% of total energy intake, depending on physical activity</td>
<td>20–35% of total energy intake</td>
</tr>
<tr>
<td>Omega-6 PUFA</td>
<td>3.0–4.5% of total energy intake (linoleic acid only)</td>
<td>2–3% of total energy intake (linoleic acid only)</td>
</tr>
<tr>
<td>Omega-3 PUFA</td>
<td>0.4–0.6% of total energy intake (alpha-linolenic acid only)</td>
<td>0.5–2% of total energy intake (ALA + other omega-3 PUFA)</td>
</tr>
</tbody>
</table>
Thank you!